
N95- 19755 - j

//

Optimal Pattern Distributions in Rete-based Production Systems /_.. /L :_'

Stephen L. Scott

Hughes Information Technology Corporation
1768 Business Center Drive, 4th Floor

Reston, VA 22090
(703) 759-1356

sscott @ mitchell.hitc.com

ABSTRACT

Since its introduction into the AI community in the early 1980's, the Rete algorithm has
been widely used. This algorithm has formed the basis for many AI tools, including
NASA's CLIPS. One drawback of Rete-based implementations, however, is that the
network structures used internally by the Rete algorithm make it sensitive to the
arrangement of individual patterns within rules. Thus while rules may be more or less
arbitrarily placed within source files, the distribution of individual patterns within these
rules can significantly affect the overall system performance. Some heuristics have been

proposed to optimize pattern placement, however, these suggestions can be conflicting.

This paper describes a systematic effort to measure the effect of pattern distribution on
production system performance. An overview of the Rete algorithm is presented to
provide context. A description of the methods used to explore the pattern ordering
problem area are presented, using internal production system metrics such as the number

of partial matches, and coarse-grained operating system data such as memory usage and
time. The results of this study should be of interest to those developing and optimizing
software for Rete-based production systems.

INTRODUCTION

The Rete algorithm was developed by Charles Forgy at Carnegie Mellon University in
the late 1970's, and is described in detail in [Forgy, 1982]. Rete has been used widely in
the expert system community throughout the 1980's and 1990's, and has formed the basis
for several commercial and R&D expert system tools [Giarratano & Riley, 1989] [ILOG,
1993]. Recent enhancements have been proposed based on parallel processing
[Miranker, 90] and matching enhancements [Lee and Schor, 1992]. Rete provides an
efficient mechanism for solving the problem of matching a group of facts with a group of
rules, a basic problem in a production system.

In this section, an overview of the Rete algorithm is given in order to provide context for
the discussion to follow. This presentation, however, is not intended to be a rigorous
analysis of the Rete algorithm.

Rete based systems assume a working memory that contains a set of facts and a network
of data structures that have been compiled from rule definitions. The rules contain a set
of condition elements (CE's) that form the left-hand-side (LHS), and a right-hand-side

263



(RHS) that performs actions. The RHS actions may be side-effect free, such as
performing a computation, invoking an external routine, performing I/O to the input or
output streams or file. Other actions on the RHS may cause changes in the working
memory, such as insertions, deletions, or modifications of facts. The Rete network
actually contains two main structures: a pattern network, and a join network. The pattern
network functions to identify which facts in working memory are associated with which
patterns in the rules. The join network is used to identify which variables are similarly
bound within a rule across CE's.

Within the pattern network, elements of the individual CE's are arranged along branches
of a tree, terminating in a leaf node that is called an alpha node. The join network
consists of groups of beta nodes, each containing two nodes as inputs and one output that
can be fed to subsequent beta nodes. Finally, the output of the join network may indicate
that one or more rules may be candidates for firing. Such rules are called activations, and
constitute inputs to the conflict set, which is a list of available rules that are ready for
execution. Typically, some arbitration mechanism is used to decide which rules of equal
precedence are fired first. When a rule fires, it may of course add elements to or delete
elements from the working memory. Such actions will repeat the processing cycle
described above, until no more rules are available to be fired.

Consider the following small set of facts and a rule. For simplicity, additional logical
constructs, such as the TEST, OR, or NOT expressions are not considered, and it is
assumed that all CE's are ANDed together, as is the default. Note that myRulel has no
RHS, as we are focusing only on the LHS elements of the rule.

(deffacts data
(Group 1 2 3)
(Int 1)
(Int 2)
(Int 3))

(defrule myRulel
(Group ?i ?j ?k)
(Int ?i)
(Int ?j)
(Int ?k)

=>)

This rule can be conceptualized in a Rete network as follows (see Figure 1). There are
two branches in the pattern network, corresponding to the facts that begin with the tokens
"Group" and "Int", respectively. Along the "Group" branch of the tree, there are nodes
for each of the tokens in the fact, terminating with an alpha node that contains the
identifier "f-l" corresponding to the first fact in the deffacts data defined above.
Similarly, along the "Int" branch, there is one node for all the facts that have "Int" as a
first token, and then additional nodes to show the various values for the second token.

Alpha nodes along this branch also contain references to the appropriate facts that they
are associated with, numbered in the diagram as "f-2" through "f-4". Note that the "Int"
branch has shared nodes for structurally similar facts, i.e. there is only on "Int" node even
though there are three facts with "Int" as a first token.

On the join network, myRulel has three joins to consider. The first CE of myRulel
requires a fact consisting of a first token equal to the constant "Group" followed by three

additional tokens. The alpha node of the "Group" branch of the pattern network supplies
one such fact, f- 1. The second CE of myRule 1 requires a fact consisting of a first token

264



equalto the constant"Int" followed by anothertoken,subjectto theconstraintthat this
tokenmust be the sameasthe secondtokenof the fact satisfying the first CE. In this
case,the fact f-2 meetsthesecriteria, hencethejoin nodeJ1 hasone partial activation.
This is becausethereis onesetof factsin theworking memorythatsatisfyits constraints.
Continuing in this fashion,theoutput of J1 is suppliedas input to J2, which requiresa
satisfiedjoin nodeasa left input anda factof theform "Int" followed by a token(subject
to theconstraintthat this tokenmustbeequalto thethird tokenof thefirst CE). Thefact
f-3 meetsthesecriteria, sojoin node J2 has one partial activation as well. This process
continues until we finish examining all CE's in myRulel and determine that there are
indeed facts to satisfy the rule. The rule is then output from the join network with the set
of facts that satisfied its constraints and sent on to the agenda, where it is queued up for
execution.

Pattom Network

J Group

/
J <i> J

/

I I I

I I I

Join Network J1 (f-l) _ _ /

0-1)

It-1 ) I
J3 (f-2) J

Activation: myRulol

Figure 1. Rete Network for myRulel. This diagram depicts the Rete
pattern and join networks for a rule with four CE's.

Consider the same set of data and a rule with the CE's arranged in a different order.
Semantically, myRulel and myRule2 are the same, however, the number of partial
matches generated by myRule2 is much greater than that generated by myRulel.

(defrule myRule2
(Int ?i)
(Int ?j)
(Int ?k)

(Group ?i ?j ?k)
=>)

265



With this rule, we have three facts that match the first CE. Examining the first two CE's,
there are three possible facts that can match the second CE, hence there are nine possible
ways to satisfy the first two CE's. Moving to the third CE, there are again three ways to
satisfy the third CE, but each of these must be considered with the nine possibilities that
preceded it, hence there are 27 possible ways to satisfy the first three CE's. Fortunately,
the fourth CE is satisfied by only one fact, so the number of partial activations for CE's
one through four is only one; it is the fact that matches the fourth CE (f-l), coupled with
exactly one set of the 27 possibilities available for CE's one through three. Summarizing,
there are 40 partial activations for this rule (3 + 9 + 27 + 1).

From the above discussion, we have seen that pattern ordering in the LHS of rules can
have significant impact on performance. Unfortunately, there are a large number of
possible orderings one can try in even a small rule. Since in general, in a rule with N
CE's, there are N ways to place the first CE, N-1 ways to place the second CE, and so on,
the number of possible pattern arrangements is given by N!. As there may be many rules
in an expert system, each with a large number of possible CE orderings, it should be clear
that it is prohibitively expensive to do an exhaustive search of all possible arrangements
of all rules in an attempt to optimize performance.

There may be some reduction in the number of arrangements if one considers that from
the pattern network point of view, some arrangements produce an equal number of partial
activations and thus can be considered together for analysis purposes. For example, the
rule aRulel

(defrule aRule 1

(Group ?i ?j)
(Int ?i)
(Int ?j)

=> )

has the same number of partial activations as aRule2,

(defrule aRule2
(Group ?i ?j)
(Int ?j)
(Int ?i)

=> )

because the CE's in slots 2 and 3 are similar with respect to effect on the join network.
So even though there are 6 possible arrangements of CE's in this rule, only 3 actually
produce different numbers of partial activations in the join network. This property is
used extensively in the Analysis section that follows, as it allows valid results to be
obtained using a manageable subset of the possible pattern orderings.

ANALYSIS AND RESULTS

In an effort to better understand the effects of pattern ordering on production system
performance, a series of tests were conducted. This section describes the various
experiments and the results obtained.

266



Partial Activations

From the discussion above, it is evident that some CE orderings are considerably more
efficient than others with respect to partial activations. A test suite was developed using a
rule with N CE's and a data set of N facts, where N-1 CE's are syntactically similar and
one CE joins across the remaining N-1 CE's. This is the configuration used in the
example myRulel and myRule2 above; note that in that case N=4 because there are four
CE's.

To interpret the data in the following table, match the number of CE's in the rule LHS
(identified by the row labeled N = <n>) with the position of the constraining fact (the fact
that has elements to match all other CE's in the rule). For the example myRulel cited
above, the row "N=4" is matched with "Fact Pos 1", giving 4 partial activations.
Similarly, the example myRule2 cited above has a constraining fact in position 4, hence
for N=4, the number of partial activations is 40. The following table shows the results of

the number of partial activations for rules with the number of CE's varying from N=2 to
N=8.

--

N=

_,.

Fact
Pos 1

Fact
Pos 2

N= 8

N= 10
N

2 2

3 3

4 4

5 5
6! 6

7 7
8 8N ._

12

14

F ac t
Pos 3

14

23
34

47

62

Fact
Pos 4

40

86

158
262

404

Fact
Pos 5

341

782

1557
2804

Fact
Pos 6

3906

9332

19610

Fact
Pos 7

55987

137258

Fact
Pos 8

960800

Table 1. Partial Activations in Rule Sets. This table shows the increase in

partial activations observed in rules with various numbers of CE's, where

a constraining fact is located at the position indicated by the column
heading.

From this, at least two observations may be made. First, it is clear that the number of
partial activations grows very rapidly. For this example set of rules and data, the number
of partial activations for a rule with N CE's is given by

N-I

Z (N- 1)i
i---0

(1.o)

With such growth, on small computer systems, this may result in unexpected termination
of a program, and even on large systems, performance may be degraded as the system
attempts to accommodate the memory demands through paging or swapping. The second
observation is the smaller the number of CE's on the LHS, the smaller the upper limit on
partial activations. This suggests that a system with a larger number of smaller rules is
better, at least from the vantage point of partial activations, than a system with a smaller
number of larger rules.

267



Memory Usage

Within the Rete network implementation, data is maintained about partial activations.
This data requires memory allocation, and as expected, the required memory grows in
proportion to the number of partial activations. To examine this, the same suite of rules
used above for partial activation testing was used, however, in this case, calls were made
to the CLIPS internal function (mem-used) in order to calculate the memory required to
store a network. The following table shows the results of these tests.

Fact Fact Fact Fact Fact Fact Fact Pos Fact Pos 8
Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 7

N = 2 376 376
N = 3 548 560 560
N = 4 596 620 620 ! 960

N = 5 836 872 872 1912 8008
N= 6 960 10081 1008 3228 18180 105652

N=7 1016 1076 1076 5076 36132 253832 1746792
N = 8 1292 13641 1364 7864 65440 536008 4300744 33947716

Table 2. Memory Requirements for Various Rule Sets. This table shows
the increase in memory requirements observed in rules with various
numbers of CE's, where a constraining fact is located at the position
indicated by the column heading. Memory allocation values are in bytes.

As expected, the amount of memory required to represent a rule varies in proportion to
the number of partial activations. The two observations given for partial activations also
hold here: some rule LHS orderings will require much less memory than others, and it is
in general more memory efficient to have more small rules than a few large rules.

Reset Time

After rules and data are read into the system, the network must be updated to reflect the
state required to represent these constructs. Data must be filtered through the network in
order to determine facts are available, and comparisons must be made across CE's to
determine which rules are eligible for firing. In order to investigate the time these
processes take, the same test suite describe above was used, however, in this case, an
operating system call was used to time the execution of the load and reset operations for
the various rules. The "timex" command, available on many systems, gives operating
system statistics about the real time, system time and user time required to execute a
process. The following table shows the results of this test, giving real time in seconds,
for the test suite.

268



Fact
Pos1

Fact
Pos2

Fact
Pos3

Fact
Pos4

Fact
Pos5

N=2 0.1 0.1
N=3 0.1 0.1 0.1
N=4 0.1 0.1 0.1 0.1
N=5 0.1 0.1 0.1 0.1 0.11
N=6 0.1 0.11 0.11 0.11
N=7 0.1

0.1N=8
0.13
0.11

0.1 0.11
0.110.11

0.11

0.12

0.15

Fact
Pos 6

0.17

0.25

0.45

Fact
Pos 7

Fact
Pos 8

0.96

2.51 17.88

Table 3. Reset Time for Rule Sets. This table shows the increase in reset

time observed in rules with various numbers of CE's, where a constraining

fact is located at the position indicated by the column heading.

As the reset times do not grow as rapidly as N increases, these results suggest that reset
time is not as great a consideration as memory or number of partial activations. Also the
granularity of timex is only 1/100 of a second, making more precise measurements
difficult.

Placement of Volatile Facts

One heuristic that has been proposed concerns the placement of volatile facts in a rule. In
data sets where a particular type of pattern is frequently asserted or retracted (or modified
if the tool supports this), it is best to put these patterns at the bottom of the LHS of the
rule. A typical example is a control fact containing constants, typically used to govern
processing phases. The justification given is that because Rete attempts to maintain the
state of the system across processing cycles, by placing the volatile fact at the bottom of
the LHS, Rete does not need to check most of the rest of the network and can realize
some performance gain. To test this, the following scenario was used. The data set
consisted of a set of facts of the form

(Int val <n> isPrime Yes)

where <n> contained a prime number in the range 1 <= n <= 1000. A volatile counter
fact of the form

(Counter <n>)

was used, where n again ranged from 1 <= n <= 1000. This fact was asserted and
retracted for each value of n in the range. The rules to test whether or not n was prime
were

(defrule

=>

isPrime

(Int val ?n isPrime Yes)
?x <- (Counter ?n)

(retract ?x)
(assert (Counter =(+ ?n 1))
(printout t ?n "is a prime "crlf))

269



(defrule

=>

notPrime

(Int val ?n isPrime Yes)
?x <- (Counter ?ctrVal&:(!= ?n ?ctrVal))

(retract ?x)
(assert (Counter =(+ ?ctrVal 1))

(printout t ?ctrVal "is not a prime "criB)

The results below indicate run times in seconds for systems that searched for primes up to
size K. The column 100, for example, indicates that primes between 1 and 100 were
sought by using the volatile fact (Counter <n>) 100 times.

The example rules isPrime and notPrime given above correspond the rules used for the

"volatile fact at bottom" row of the table. The "volatile fact at top" rules are virtually the
same, except that the (Counter <n>) fact appears as the first CE instead of the second as
illustrated above.

volatile fact

at top
volatile fact

at bottom

100 250 500
1.67 4.74 8.17

1.39 3.92 8.06

750 1000
15.01

12.19

20.31

16.43

Table 4. Run Times for Rules with Volatile Facts. This table shows the

differences in run times observed in rules with volatile facts placed at the
top or bottom of the LHS. Times are in seconds.

This example shows that placing volatile facts at the bottom of a rule improves runtime

performance, even for a small rule set and small amounts of data. The improvement is
more obvious as the problem size grows, as the observed difference for K=100 is slight,
whereas the difference for K=1000 is almost 4 seconds.

Placement of Uncommon Facts

Another heuristic suggests that facts that are relatively rare in the system should be placed
first on the LHS. To test this, the following scenario was used. A data set contained
three classes of facts: sensor facts, unit facts, and controller facts. These facts were

distributed in the system in various proportions. Two rules were compared, one
organized so that its CE's matched the distribution of the facts, and the other exactly
opposite. In the following rules, rareFirst is tailored to perform well when the number of
Ctrl facts is less than the number of Unit facts and the number of Unit facts is less than

the number of Sensor facts. Conversely, rareLast is not expected to perform as well
under this arrangement of data.

(defrule rareFirst

(Ctrl Id ?cid Status ?cStat)
(Unit Id ?uid Ctrl ?cid Status ?ustat
(Sensor Id ?sid Unit ?uid Value ?sVal)

=>)

Value ?uVal)

270



(defrule rareLast
(Sensor Id ?sid Unit ?uid Value?sVal)
(Unit Id ?uid Ctrl ?cid Status?ustat
(Ctrl Id ?cid Status?cStat)

=>)

Value ?uVal)

The following table showsthe numberof partial activationsgeneratedfor these rules
given variousdistributionsof matchingCtrl, Unit, andSensorfacts. The nomenclature
i:j:k indicatesthattherewerei Ctrl facts,j Unit facts,andk Sensorfacts.

rarestfactat
top

rarest fact at
bottom

Ctrl:Unit:
Sensor
3:10:20

33

Ctrl:Unit:
Sensor
5:20:50

75

Ctrl:Unit:
Sensor

10:50:100
160

Ctrl:Unit:
Sensor

25:125:500
650

Ctrl:Unit:
Sensor

50:200:1000
1250

60 150 3(_ 1500 3000

Table5. Partial Activationsfor Ruleswith RareFacts. This tableshows
the differencesin partial activationsobservedin rules with patternsthat
matchrarestfactsat thetop or bottomof theLHS.

This testshowsthat placinglesscommonfactsatthetop of theLHS reducesthe number
of partial activationsfor the rule. Another point is worthy of mention here:had the
distributionof factsbeendifferent, rareLastmighthaveoutperformedrareFirstrule. This
pointsout a potential problem,as attemptingto optimize a systembasedon one set of
datamaynot haveoptimal resultson othersetsof data. Given that expert systemsare
typically muchmoredatadriven thanother forms of software,this kind of optimization
maynotbeeffective if thedatasetsvarywidely.

CONCLUSIONS

This paper has described a number of tests performed to investigate the effects of pattern
ordering on production system performance. The results have borne out widely held
heuristics regarding pattern placement on the LHS of rules. The results have quantified
various aspects of the problem of partial activation growth by measuring the number of
partial activations, memory requirements, system reset and run time for a variety of
pattern configurations.

In general, the conclusions that can be drawn are as follows. Partial activations can vary

ex.ponentially as a result of pattern ordering. This suggests that (1) rules should be
written with some regard to minimizing partial activations, and (2) systems should use
larger numbers of small rules rather than smaller numbers of large rules. The second
suggestion helps to reduce the risk of having potentially large numbers of partial
activations. The growth of partial activations as a result of pattern ordering affects
memory requirements, and, to a lesser extent, reset time. As the number of partial
activations increases, the memory required and the reset time also increase.

Placing patterns that match volatile facts at the bottom of a rule LHS improves run-time
performance. Placing patterns that match the least common facts in a system at the top of

271



a rule LHS reducesthenumberof partial activations observed. It may be difficult to use
these methods in practice, however, since both of them depend on knowing the frequency
with which certain facts appear in the system. In some cases, this may be readily
apparent, but in other cases, especially where the form of the data may vary widely, these
may not be practical. Long term statistical analysis of the system performance may be
required to make use of these optimizations.

REFERENCES

1. "CLIPS PROGRAMMER'S GUIDE, VERSION 6.0, JSC-25012, NASA Johnson

Space Center, Houston, TX, June 1993.

2. "CLIPS USER'S GUIDE, VERSION 6.0", JSC-25013, NASA Johnson Space Center,
Houston, TX, May 1993.

3. "ILOG Rules C++ User's Guide, Version 2.0", ILOG Corporation, 1993.

4. Forgy, Charles, "Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern
Match Problem", ARTIFICIAL INTELLIGENCE, vol 19, 1982, pg 17-37.

5. Giarratano, Joseph and Gary Riley, EXPERT SYSTEMS: PRINCIPLES AND
PROGRAMMING, PWS-Kent Publishing Company, Boston, MA, 1989.

6. Lee, Ho Soo, and Schor, Marshall, "Match Algorithms for Generalized Rete
Networks", ARTIFICIAL INTELLIGENCE, Vol 54, No 3, 1992, pg 249-274.

7. Miranker, Daniel, TREAT: A NEW AND EFFICIENT MATCH ALGORITHM FOR
AI PRODUCTION SYSTEMS, Morgan Kaufmann Publishers, Inc, San Mateo, CA,
1990.

8. Schneier, Bruce, "The Rete Matching Algorithm," AI EXPERT, December 1992, pg
24-29.

272


